22 research outputs found

    Geological Alterations and Chemical Treatment of a Polluted Limestone Foundation

    Get PDF
    A large factory for the production of concentrated sulphuric acid is constructed in 1977 and located in the west of Iraq near Al-Kaim city. The footings carrying the installations rest on calcareous rocks which extend deep into the ground. For many years, about 1.5 tons per day of acid seeped and percolated into the ground apart from frequent accidents when larger amounts took their path down into the ground. A record of the footings movement revealed that the footings experienced significant heave and settlement indicating a cyclic movement which depends on the frequency of seepage. The results of the past geotechnical and geochemical investigations have been carefully studied in order to trace the geological alterations occurring in the ground due to the percolation of sulphuric acid over years. It appeared that at certain depths the limestone rock has been almost converted to dough and that a significant amount of dolomitization has taken place in the factory ground. Contaminated samples have been obtained from boreholes executed in the factory site. Many chemical materials have been chosen to treat the contaminated samples. Among these materials are sodium silicate, sodium carbonate, sodium silicate plus calcium chloride, barium sulfate, aluminum oxide, ferric oxide and bentonite. Unconfined compression, ultrasonic wave, physical, wet chemical and XRD tests were performed on intact, contaminated and treated specimens. The results proved that sodium silicate is the best alternative to be used for chemical grouting of the ground. The use of calcium chloride with sodium silicate did not show an additional advantage. Samples contaminated to the degree of having the form of dough have almost regained their original solid state strength when treated with sodium silicate

    Agile SoC Development with Open ESP

    Full text link
    ESP is an open-source research platform for heterogeneous SoC design. The platform combines a modular tile-based architecture with a variety of application-oriented flows for the design and optimization of accelerators. The ESP architecture is highly scalable and strikes a balance between regularity and specialization. The companion methodology raises the level of abstraction to system-level design and enables an automated flow from software and hardware development to full-system prototyping on FPGA. For application developers, ESP offers domain-specific automated solutions to synthesize new accelerators for their software and to map complex workloads onto the SoC architecture. For hardware engineers, ESP offers automated solutions to integrate their accelerator designs into the complete SoC. Conceived as a heterogeneous integration platform and tested through years of teaching at Columbia University, ESP supports the open-source hardware community by providing a flexible platform for agile SoC development.Comment: Invited Paper at the 2020 International Conference On Computer Aided Design (ICCAD) - Special Session on Opensource Tools and Platforms for Agile Development of Specialized Architecture

    Implementation and Evaluation of Jacobi Iteration on the Imagine Stream Processor

    No full text

    Data Pipeline Optimization for Shared Memory Multiple-SIMD Architecture

    No full text
    corecore